000 01937cam a22003137a 4500
001 vtls000002853
003 VRT
005 20250102223201.0
008 081203s2005 au a |b 000 0 eng d
020 _a3211252592 (pbk.)
020 _a9783211252598 (pbk.)
039 9 _a201402040110
_bVLOAD
_c201007310930
_dmalmash
_c200812160807
_dvenkatrajand
_c200812031354
_dNoora
_y200812031352
_zNoora
050 0 0 _aQA927
_b.N685 2005
072 7 _aTA
_2lcco
082 0 0 _a532/.0593
_222
084 _a33.27
_2bcl
245 0 0 _aNonlinear Waves in Fluids :
_bRecent Advances and Modern Applications /
_cedited by Roger Grimshaw.
260 _aWien ;
_aNew York :
_bSpringer,
_c2005.
300 _a196 p. :
_bill. ;
_c24 cm.
504 _aIncludes bibliographical references.
505 _aKorteweg-de Vries Equation (R. Grimshaw).- Weakly Nonlinear Wave Packets and the Nonlinear Schrodinger Equation (F. Dias, T. Bridges).- Wave Interactions (J. Vanneste).- Wave-mean Interaction Theory (O. Buhler).- Wave Turbulence with Applications to Atmospheric and Oceanic Waves (V. Zeitlin).- Nonlinear Amplitude Equations and Solitons in Bose-Einstein Condensates (G. Huang).
520 _aThe work covers asymptotic methods for the derivation of canonical evolution equations, such as the Korteweg-deVries and nonlinear Schrodinger equations, descriptions of the basic solution sets of these evolution equations, and the most relevant and compelling applications. These themes are interlocked, and this will be demonstrated throughout the text. The topics address any fluid flow application, but there is a bias towards geophysical fluid dynamics, reflecting for the most part the areas where many applications been found.
650 0 _aNonlinear waves.
_918386
650 0 _aFluid dynamics.
_918387
650 0 _aWave-motion, Theory of.
_918388
650 0 _aNonlinear wave equations.
_918389
700 1 _aGrimshaw, R.
_918390
942 _2lcc
_n0
_cBK
999 _c7128
_d7128