000 02789cam a2200277 a 4500
001 vtls000005079
003 VRT
005 20250102224931.0
008 090221s2005 nyua |b 001 0 eng
020 _a0387247661
039 9 _a201402040129
_bVLOAD
_c201007310935
_dmalmash
_c200902210947
_dvenkatrajand
_y200902210946
_zvenkatrajand
050 0 0 _aQA184.2
_b.R66 2005
082 0 0 _a512/.5
_222
100 1 _aRoman, Steven.
_949794
245 1 0 _aAdvanced Linear Algebra /
_cSteven Roman.
250 _a2nd ed.
260 _aNew York :
_bSpringer,
_cc2005.
300 _axvi, 482 p. :
_bill. ;
_c25 cm.
440 0 _aGraduate texts in mathematics ;
_v135
_91563
504 _aIncludes bibliographical references (p. [473]-474) and index.
505 _aVector Spaces.- Linear Transformations.- The Isomorphism Theorems.- Modules I: Basic Properties.- Modules II: Free and Noetherian Modules.- Modules over a Principal Ideal Domain.- The Structure of a Linear Operator.- Eigenvalues and Eigenvectors.- Real and Complex Inner Product Spaces.- Structure Theory for Normal Operators.- Metric Vector Spaces: The Theory of Bilinear Forms.- Metric Spaces.- Hilbert Spaces.- Tensor Products.- Positive Solutions to Linear Systems: Convexity and Separation.- Affine Geometry.- Operator Factorizations: QR and Singular Value.- The Umbral Calculus.- References.- Index.
520 _aThis is a graduate textbook covering an especially broad range of topics. The first part of the book contains a careful but rapid discussion of the basics of linear algebra, including vector spaces, linear transformations, quotient spaces, and isomorphism theorems. The author then proceeds to modules, emphasizing a comparison with vector spaces. A thorough discussion of inner product spaces, eigenvalues, eigenvectors, and finite dimensional spectral theory follows, culminating in the finite dimensional spectral theorem for normal operators. The second part of the book is a collection of topics, including metric vector spaces, metric spaces, Hilbert spaces, tensor products, and affine geometry. The last chapter discusses the umbral calculus, an area of modern algebra with important applications.The second edition contains two new chapters: a chapter on convexity, separation and positive solutions to linear systems and a chapter on the QR decomposition, singular values and pseudoinverses. The treatments of tensor products and the umbral calculus have been greatly expanded and there is now a discussion of determinants (in the chapter on tensor products), the complexification of a real vector space, Schur's lemma and Gersgorin disks.
650 0 _aAlgebras, Linear.
_91024
856 4 2 _3Publisher description
_uhttp://www.loc.gov/catdir/enhancements/fy0662/2005040244-d.html
942 _2lcc
_n0
_cBK
999 _c23653
_d23653