000 02147pam a2200253 i 4500
001 vtls000001746
003 VRT
005 20250102224545.0
008 081109s1979 nyua |b 001 0 eng d
020 _a0387903577
039 9 _a202301160947
_bshakra
_c201402040055
_dVLOAD
_c201007211309
_dmalmash
_c200811101456
_dvenkatrajand
_y200811091245
_zNoora
050 0 0 _aQA641
_b.T36
100 1 _aThorpe, John A.
_943673
245 1 0 _aElementary Topics in Differential Geometry /
_cJohn A. Thorpe.
260 _aNew York :
_bSpringer-Verlag,
_cc1979.
300 _axiii, 253 p. :
_bill. ;
_c24 cm.
490 0 _aUndergraduate texts in mathematics
500 _aIncludes indexes.
504 _aBibliography: p. 245.
505 _aContents: Graphs and Level Sets.- Vector Fields.- The Tangent Space.- Surfaces.- Vector Fields on Surfaces; Orientation.- The Gauss Map.- Geodesics.- Parallel Transport.- The Weingarten Map.- Curvature of Plane Curves.- Arc Length and Line Integrals.- Curvature of Surfaces.- Convex Surfaces.- Parametrized Surfaces.- Local Equivalence of Surfaces and Parametrized Surfaces.- Focal Points.- Surface Area and Volume.- Minimal Surfaces.- The Exponential Map.- Surfaces with Boundary.- The Gauss-Bonnet Theorem.- Rigid Motions and Congruence.- Isometries.- Riemannian Metrics.
520 _aThis introductory text develops the geometry of n-dimensional oriented surfaces in Rn+1. By viewing such surfaces as level sets of smooth functions, the author is able to introduce global ideas early without the need for preliminary chapters developing sophisticated machinery. the calculus of vector fields is used as the primary tool in developing the theory. Coordinate patches are introduced only after preliminary discussions of geodesics, parallel transport, curvature, and convexity. Differential forms are introduced only as needed for use in integration. The text, which draws significantly on students' prior knowledge of linear algebra, multivariate calculus, and differential equations, is designed for a one-semester course at the junior/senior level.
650 0 _aGeometry, Differential.
_9904
942 _2lcc
_n0
_cBK
999 _c20028
_d20028