000 01958cam a22002894a 4500
001 vtls000003563
003 VRT
005 20250102224234.0
008 081224s2005 nyua |b 001 0 eng
020 _a0387208747 (acidfree paper)
039 9 _a201402040117
_bVLOAD
_c201006271223
_dmalmash
_c200812241403
_dNoora
_c200812241345
_dNoora
_y200812241343
_zNoora
050 0 0 _aTJ211
_b.S433 2005
100 1 _aSelig, J. M.
_938143
245 1 0 _aGeometric fundamentals of robotics /
_cJ.M. Selig.
250 _a2nd ed.
260 _aNew York :
_bSpringer,
_c2005.
300 _axv, 398 p. :
_bill. ;
_c24 cm.
440 0 _aMonographs in computer science
_937880
500 _aRev. ed. of: Geometrical methods in robotics. c1996.
504 _aIncludes bibliographical references and index.
505 _aPreface.- Introduction.- Lie Groups.- Subgroups.- Lie Algebra.- A Little Kinematics.- Line Geometry.- Representation Theory.- Screw Systems.- Clifford Algebra.- A Little More Kinematics.- The Study Quadric.- Statics.- Dynamics.- Constrained Dynamics.- Differential Geometry.- References.- Index.
520 _aGeometric Fundamentals of Robotics provides an elegant introduction to the geometric concepts that are important to applications in robotics. This second edition is still unique in providing a deep understanding of the subject: rather than focusing on computational results in kinematics and robotics, it includes significant state-of-the-art material that reflects important advances in the field, connecting robotics back to mathematical fundamentals in group theory and geometry.Geometric Fundamentals of Robotics serves a wide audience of graduate students as well as researchers in a variety of areas, notably mechanical engineering, computer science, and applied mathematics. It is also an invaluable reference text.
650 0 _aRobotics.
_91879
650 0 _aGeometry.
_92610
650 0 _aLie groups.
_910130
942 _2lcc
_n0
_cBK
999 _c16996
_d16996