000 | 01748cam a2200253 a 4500 | ||
---|---|---|---|
001 | vtls000001796 | ||
003 | VRT | ||
005 | 20250102224224.0 | ||
008 | 081110s1990 enk |b 001 0 eng d | ||
020 | _a0521395216 | ||
020 | _a0521395542 (paperback) | ||
039 | 9 |
_a202301191031 _bshakra _c201402040055 _dVLOAD _c201007271228 _dmalmash _c200811101447 _dvenkatrajand _y200811100857 _zNoora |
|
050 | 0 | 0 |
_aQA612.2 _b.A85 1990 |
100 | 1 |
_aAtiyah, Michael Francis, _d1929- _937852 |
|
245 | 1 | 4 |
_aThe Geometry and Physics of Knots / _cMichael Atiyah. |
260 |
_aCambridge ; _aNew York : _bCambridge University Press, _c1990. |
||
300 |
_ax, 78 p. ; _c23 cm. |
||
440 | 0 |
_aLezioni lincee _937853 |
|
504 | _aIncludes bibliographical references (p. [73]-75) and index. | ||
505 | _aPreface; 1. History and background; 2. Topological quantum field theories; 3. Non-abelian moduli spaces; 4. Symplectic quotients; 5. The infinite-dimensional case; 6. Projective flatness; 7. The Feynman integral formulation; 8. Final comments; Bibliography; Index. | ||
520 | _aThese notes arise from lectures presented in Florence under the auspices of the Accadamia dei Lincee and deal with an area that lies at the crossroads of mathematics and physics. The material presented here rests primarily on the pioneering work of Vaughan Jones and Edward Witten relating polynomial invariants of knots to a topological quantum field theory in 2+1 dimensions. Professor Atiyah here presents an introduction to Witten's ideas from the mathematical point of view. The book will be essential reading for all geometers and gauge theorists as an exposition of new and interesting ideas in a rapidly developing area. | ||
650 | 0 |
_aKnot theory. _937854 |
|
942 |
_2lcc _n0 _cBK |
||
999 |
_c16823 _d16823 |