Image from Google Jackets

Monte Carlo methods in statistical physics / M.E.J. Newman and G.T. Barkema.

By: Contributor(s): Material type: TextTextPublication details: Oxford : Clarendon Press, 1999.Description: xiv, 475 p. : ill. ; 24 cmISBN:
  • 0198517971 (hbk)
  • 0198517963 (pbk)
Subject(s): LOC classification:
  • QC174.85. .M64.N49 2006
Summary: This book provides an introduction to Monte Carlo simulations in classical statistical physics and is aimed both at students beginning work in the field and at more experienced researchers who wish to learn more about Monte Carlo methods. The material covered includes methods for both equilibrium and out of equilibrium systems, and common algorithms like the Metropolis and heat-bath algorithms are discussed in detail, as well as more sophisticated ones such as continuous time Monte Carlo, cluster algorithms, multigrid methods, entropic sampling and simulated tempering. Data analysis techniques are also explained starting with straightforward measurement and error-estimation techniques and progressing to topics such as the single and multiple histogram methods and finite size scaling. The last few chapters of the book are devoted to implementation issues, including discussions of such topics as lattice representations, efficient implementation of data structures, multispin coding, parallelization of Monte Carlo algorithms, and random number generation.At the end of the book the authors give a number of example programmes demonstrating the applications of these techniques to a variety of well-known models.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Includes bibliographical references (p. [410]-413)

This book provides an introduction to Monte Carlo simulations in classical statistical physics and is aimed both at students beginning work in the field and at more experienced researchers who wish to learn more about Monte Carlo methods. The material covered includes methods for both equilibrium and out of equilibrium systems, and common algorithms like the Metropolis and heat-bath algorithms are discussed in detail, as well as more sophisticated ones such as continuous time Monte Carlo, cluster algorithms, multigrid methods, entropic sampling and simulated tempering. Data analysis techniques are also explained starting with straightforward measurement and error-estimation techniques and progressing to topics such as the single and multiple histogram methods and finite size scaling. The last few chapters of the book are devoted to implementation issues, including discussions of such topics as lattice representations, efficient implementation of data structures, multispin coding, parallelization of Monte Carlo algorithms, and random number generation.At the end of the book the authors give a number of example programmes demonstrating the applications of these techniques to a variety of well-known models.

There are no comments on this title.

to post a comment.
New Arrivals

Loading...

Contact Us

Library: Location maps

Phone: 00968 2323 7091 Email: Ask us a question

Library Hours

Sunday - Thursday 7:30AM - 8:00 PM

Friday - Saturday Closed