Image from Google Jackets

Introduction to Plane Algebraic Curves / Ernst Kunz ; translated by Richard G. Belshoff.

By: Material type: TextTextPublication details: Boston : Birkhauser, c2005.Description: xii, 293 p. : ill. ; 24 cmISBN:
  • 0817643818 (alk. paper)
Uniform titles:
  • Ebene algebraische Kurven. English
Subject(s): LOC classification:
  • QA567 .K8613 2005
Contents:
* Preface * Conventions and Notation * Part I: Plane Algebraic Curves * Affine Algebraic Curves * Projective Algebraic Curves * The Coordinate Ring of an Algebraic Curve and the Intersections of Two Curves * Rational Functions on Algebraic Curves * Intersection Multiplicity and Intersection Cycle of Two Curves * Regular and Singular Points of Algebraic Curves. Tangents * More on Intersection Theory. Applications * Rational Maps. Parametric Representations of Curves * Polars and Hessians of Algebraic Curves * Elliptic Curves * Residue Calculus * Applications of Residue Theory to Curves * The Riemann--Roch Theorem * The Genus of an Algebraic Curve and of its Function Field * The Canonical Divisor Class * The Branches of a Curve Singularity * Conductor and Value Semigroup of a Curve Singularity * Part II: Algebraic Foundations * Algebraic Foundations * Graded Algebras and Modules * Filtered Algebras * Rings of Quotients. Localization * The Chinese Remainder Theorem * Noetherian Local Rings and Discrete Valuation Rings * Integral Ring Extensions * Tensor Products of Algebras * Traces * Ideal Quotients * Complete Rings. Completion * Tools for a Proof of the Riemann--Roch Theorem * References * Index * List of Symbols
Summary: This work treats an introduction to commutative ring theory and algebraic plane curves, requiring of the student only a basic knowledge of algebra, with all of the algebraic facts collected into several appendices that can be easily referred to, as needed. Kunz's proven conception of teaching topics in commutative algebra together with their applications to algebraic geometry makes this book significantly different from others on plane algebraic curves. The exposition focuses on the purely algebraic aspects of plane curve theory, leaving the topological and analytical viewpoints in the background, with only casual references to these subjects and suggestions for further reading. Most important to this text: emphasizes and utilizes the theory of filtered algebras, their graduated rings and Rees algebras, to deduce basic facts about the intersection theory of plane curves; presents residue theory in the affine plane and its applications to intersection theory; methods of proof for the Riemann-Roch theorem conform to the presentation of curve theory, formulated in the language of filtrations and associated graded rings; and examples, exercises, figures and suggestions for further study round out this fairly self-contained textbook.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Copy number Status Barcode
Books Library First Floor QA567 .K8613 2005 (Browse shelf(Opens below)) 1 Available 8926

Includes bibliographical references (p. [285]-287) and index.

* Preface * Conventions and Notation * Part I: Plane Algebraic Curves * Affine Algebraic Curves * Projective Algebraic Curves * The Coordinate Ring of an Algebraic Curve and the Intersections of Two Curves * Rational Functions on Algebraic Curves * Intersection Multiplicity and Intersection Cycle of Two Curves * Regular and Singular Points of Algebraic Curves. Tangents * More on Intersection Theory. Applications * Rational Maps. Parametric Representations of Curves * Polars and Hessians of Algebraic Curves * Elliptic Curves * Residue Calculus * Applications of Residue Theory to Curves * The Riemann--Roch Theorem * The Genus of an Algebraic Curve and of its Function Field * The Canonical Divisor Class * The Branches of a Curve Singularity * Conductor and Value Semigroup of a Curve Singularity * Part II: Algebraic Foundations * Algebraic Foundations * Graded Algebras and Modules * Filtered Algebras * Rings of Quotients. Localization * The Chinese Remainder Theorem * Noetherian Local Rings and Discrete Valuation Rings * Integral Ring Extensions * Tensor Products of Algebras * Traces * Ideal Quotients * Complete Rings. Completion * Tools for a Proof of the Riemann--Roch Theorem * References * Index * List of Symbols

This work treats an introduction to commutative ring theory and algebraic plane curves, requiring of the student only a basic knowledge of algebra, with all of the algebraic facts collected into several appendices that can be easily referred to, as needed. Kunz's proven conception of teaching topics in commutative algebra together with their applications to algebraic geometry makes this book significantly different from others on plane algebraic curves. The exposition focuses on the purely algebraic aspects of plane curve theory, leaving the topological and analytical viewpoints in the background, with only casual references to these subjects and suggestions for further reading. Most important to this text: emphasizes and utilizes the theory of filtered algebras, their graduated rings and Rees algebras, to deduce basic facts about the intersection theory of plane curves; presents residue theory in the affine plane and its applications to intersection theory; methods of proof for the Riemann-Roch theorem conform to the presentation of curve theory, formulated in the language of filtrations and associated graded rings; and examples, exercises, figures and suggestions for further study round out this fairly self-contained textbook.

There are no comments on this title.

to post a comment.
New Arrivals

Loading...

Contact Us

Library: Location maps

Phone: 00968 2323 7091 Email: Ask us a question

Library Hours

Sunday - Thursday 7:30AM - 8:00 PM

Friday - Saturday Closed