Image from Google Jackets

Mathematical methods in the physical sciences / Mary L. Boas.

By: Material type: TextTextPublication details: Hoboken, NJ : Wiley, c2006.Edition: 3rd edDescription: xviii, 839 p. : ill. ; 27 cmISBN:
  • 9780471198260 (acidfree paper)
  • 0471198269 (acid-free paper)
  • 9780471365808 (WIE : acid-free paper)
  • 0471365807 (WIE : acid-free paper)
Subject(s): LOC classification:
  • QA37.3 .B63 2006
Contents:
1. Infinite Series, Power Series. The Geometric Series. Definitions and Notation. Applications of Series. Convergent and Divergent Series. Convergence Tests. Convergence Tests for Series of Positive Terms. Alternating Series. Conditionally Convergent Series. Useful Facts about Series. Power Series; Interval of Convergence. Theorems about Power Series. Expanding Functions in Power Series. Expansion Techniques. Accuracy of Series Approximations. Some Uses of Series. 2. Complex Numbers. Introduction. Real and Imaginary Parts of a Complex Number. The Complex Plane. Terminology and Notation. Complex Algebra. Complex Infinite Series. Complex Power Series; Disk of Convergence. Elementary Functions of Complex Numbers. Euler's Formula. Powers and Roots of Complex Numbers. The Exponential and Trigonometric Functions. Hyperbolic Functions. Logarithms. Complex Roots and Powers. Inverse Trigonometric and Hyperbolic Functions. Some Applications. 3. Linear Algebra. Introduction. Matrices; Row Reduction. Determinants; Cramer's Rule. Vectors. Lines and Planes. Matrix Operations. Linear Combinations, Functions, Operators. Linear Dependence and Independence. Special Matrices and Formulas. Linear Vector Spaces. Eigenvalues and Eigenvectors. Applications of Diagonalization. A Brief Introduction to Groups. General Vector Spaces. 4. Partial Differentiation. Introduction and Notation. Power Series in Two Variables. Total Differentials. Approximations using Differentials. Chain Rule. Implicit Differentiation. More Chain Rule. Maximum and Minimum Problems. Constraints; Lagrange Multipliers. Endpoint or Boundary Point Problems. Change of Variables. Differentiation of Integrals. 5. Multiple Integrals. Introduction. Double and Triple Integrals. Applications of Integration. Change of Variables in Integrals; Jacobians. Surface Integrals. 6. Vector Analysis. Intro
Summary: Now in its third edition, Mathematical Concepts in the Physical Sciences provides a comprehensive introduction to the areas of mathematical physics. It combines all the essential math concepts into one compact, clearly written reference.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Copy number Status Barcode
Books Library First Floor QA37.3 .B63 2006 (Browse shelf(Opens below)) 1 Available 10265
Books Library First Floor QA37.3 .B63 2006 (Browse shelf(Opens below)) 2 Available 8975

Includes index.

1. Infinite Series, Power Series. The Geometric Series. Definitions and Notation. Applications of Series. Convergent and Divergent Series. Convergence Tests. Convergence Tests for Series of Positive Terms. Alternating Series. Conditionally Convergent Series. Useful Facts about Series. Power Series; Interval of Convergence. Theorems about Power Series. Expanding Functions in Power Series. Expansion Techniques. Accuracy of Series Approximations. Some Uses of Series. 2. Complex Numbers. Introduction. Real and Imaginary Parts of a Complex Number. The Complex Plane. Terminology and Notation. Complex Algebra. Complex Infinite Series. Complex Power Series; Disk of Convergence. Elementary Functions of Complex Numbers. Euler's Formula. Powers and Roots of Complex Numbers. The Exponential and Trigonometric Functions. Hyperbolic Functions. Logarithms. Complex Roots and Powers. Inverse Trigonometric and Hyperbolic Functions. Some Applications. 3. Linear Algebra. Introduction. Matrices; Row Reduction. Determinants; Cramer's Rule. Vectors. Lines and Planes. Matrix Operations. Linear Combinations, Functions, Operators. Linear Dependence and Independence. Special Matrices and Formulas. Linear Vector Spaces. Eigenvalues and Eigenvectors. Applications of Diagonalization. A Brief Introduction to Groups. General Vector Spaces. 4. Partial Differentiation. Introduction and Notation. Power Series in Two Variables. Total Differentials. Approximations using Differentials. Chain Rule. Implicit Differentiation. More Chain Rule. Maximum and Minimum Problems. Constraints; Lagrange Multipliers. Endpoint or Boundary Point Problems. Change of Variables. Differentiation of Integrals. 5. Multiple Integrals. Introduction. Double and Triple Integrals. Applications of Integration. Change of Variables in Integrals; Jacobians. Surface Integrals. 6. Vector Analysis. Intro

Now in its third edition, Mathematical Concepts in the Physical Sciences provides a comprehensive introduction to the areas of mathematical physics. It combines all the essential math concepts into one compact, clearly written reference.

There are no comments on this title.

to post a comment.
New Arrivals

Loading...

Contact Us

Library: Location maps

Phone: 00968 2323 7091 Email: Ask us a question

Library Hours

Sunday - Thursday 7:30AM - 8:00 PM

Friday - Saturday Closed