Introduction to Electronic Circuit Design / Richard R. Spencer, Mohammed S. Ghausi.
Material type: TextPublication details: Upper Saddle River, N.J. : Prentice Hall/Pearson Education, Inc., c2003.Description: xx, 1132 p. : ill. ; 26 cm. + 1 CD-ROM (4 3/4 inch.)ISBN:- 0201361833
- 0130423467 (pbk.)
- TK7867 .S817 2003
Item type | Current library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|
Books | Library First Floor | TK7867 .S817 2003 (Browse shelf(Opens below)) | 1 | Available | 7583 | |
Books | Library First Floor | TK7867 .S817 2003 (Browse shelf(Opens below)) | 2 | Available | 7584 | |
Books | Library First Floor | TK7867 .S817 2003 (Browse shelf(Opens below)) | 3 | Available | 7388 |
. THE FOUNDATIONS OF ELECTRONIC CIRCUIT DESIGN. 1. Electronic Circuit Design. The Process of Design. Analysis for Design. Electronic Systems. Notation. 2. Semiconductor Physics and Electronic Devices. Material Properties. Conduction Mechanisms. Conductor-to-Semiconductor Contacts. pn-Junction Diodes. Bipolar Junction Transistors (BJTs). Metal-Oxide Semiconductor Field-Effect Transistors (MOSFETs). Junction Field-Effect Transistors (JFET's). Metal-Semiconductor FET's (MOSFET's). Silicon Controlled Rectifier and Power Handling Devices. Comparison of Devices. 3. Solid-State Device Fabrication. CMOS Technology. Bipolar Technology. 4. Computer-Aided Design: Tools and Techniques. Overview of Simulation Techniques. Circuit Simulation Using SPICE. Circuit Elements and Models for SPICE. Macro Models in SPICE. II. ANALOG ELECTRONIC CIRCUIT DESIGN. 5. Operational Amplifiers. Basic Op Amp Circuits. Frequency-Dependent Op Amp Circuits. Nonlinear Op Amp Circuits. Nonideal Characteristics of Op Amps. 6. Small-Signal Linearity and Amplification. Linear Time-Invariant Networks. Nonlinear Circuit Analysis. Small-Signal Analysis. Small-Signal Amplifiers. Types of Amplifiers. 7. DC Biasing. DC and Large-Signal Low-Frequency Models for Design. Biasing of Single-Stage Amplifiers. Biasing of Multi-Stage Amplifiers. Biasing for Integrated Circuits. Biasing of Differential Amplifiers. Worst-Case Analysis and Parameter Variation. 8. Low-Frequency Small-Signal AC Analysis and Amplifiers. Low-Frequency Small-Signal Models for Design. Stages with Voltage and Current Gain. Voltage Buffers. Current Buffers. Integrated Amplifiers. Differential Amplifiers. Multi-Stage Amplifiers. Comparison of BJT and FET Amplifiers. 9. Amplifier Frequency Response. High-Frequency Small-Signal Models for Design. Stages with Voltage and Current Gain. Voltage Buffers. Current Buffers. Comparison of Single-Stage Amplifiers. Multi-Stage Amplifiers. Differential Amplifiers.
For two-semester/three-quarter, upper-level courses in Electronic Circuit Design. A basic understanding of circuit design is useful for many engineers-even those who may never actually design a circuit-because it is likely that they will fabricate, test, or use these circuits in some way during their careers. This text provides a thorough and rigorous explanation of both analog and digital transistor-level circuit design with a focus on the underlying principles of how different circuits work-instead of relying completely on design procedures or rules of thumb. In this way, students develop the intuition that is essential to understanding and solving design problems.
There are no comments on this title.