Image from Google Jackets

Elementary Topics in Differential Geometry / John A. Thorpe.

By: Material type: TextTextSeries: Undergraduate texts in mathematicsPublication details: New York : Springer-Verlag, c1979.Description: xiii, 253 p. : ill. ; 24 cmISBN:
  • 0387903577
Subject(s): LOC classification:
  • QA641 .T36
Contents:
Contents: Graphs and Level Sets.- Vector Fields.- The Tangent Space.- Surfaces.- Vector Fields on Surfaces; Orientation.- The Gauss Map.- Geodesics.- Parallel Transport.- The Weingarten Map.- Curvature of Plane Curves.- Arc Length and Line Integrals.- Curvature of Surfaces.- Convex Surfaces.- Parametrized Surfaces.- Local Equivalence of Surfaces and Parametrized Surfaces.- Focal Points.- Surface Area and Volume.- Minimal Surfaces.- The Exponential Map.- Surfaces with Boundary.- The Gauss-Bonnet Theorem.- Rigid Motions and Congruence.- Isometries.- Riemannian Metrics.
Summary: This introductory text develops the geometry of n-dimensional oriented surfaces in Rn+1. By viewing such surfaces as level sets of smooth functions, the author is able to introduce global ideas early without the need for preliminary chapters developing sophisticated machinery. the calculus of vector fields is used as the primary tool in developing the theory. Coordinate patches are introduced only after preliminary discussions of geodesics, parallel transport, curvature, and convexity. Differential forms are introduced only as needed for use in integration. The text, which draws significantly on students' prior knowledge of linear algebra, multivariate calculus, and differential equations, is designed for a one-semester course at the junior/senior level.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Copy number Status Barcode
Books Library First Floor QA641 .T36 (Browse shelf(Opens below)) 1 Available 8675

Includes indexes.

Bibliography: p. 245.

Contents: Graphs and Level Sets.- Vector Fields.- The Tangent Space.- Surfaces.- Vector Fields on Surfaces; Orientation.- The Gauss Map.- Geodesics.- Parallel Transport.- The Weingarten Map.- Curvature of Plane Curves.- Arc Length and Line Integrals.- Curvature of Surfaces.- Convex Surfaces.- Parametrized Surfaces.- Local Equivalence of Surfaces and Parametrized Surfaces.- Focal Points.- Surface Area and Volume.- Minimal Surfaces.- The Exponential Map.- Surfaces with Boundary.- The Gauss-Bonnet Theorem.- Rigid Motions and Congruence.- Isometries.- Riemannian Metrics.

This introductory text develops the geometry of n-dimensional oriented surfaces in Rn+1. By viewing such surfaces as level sets of smooth functions, the author is able to introduce global ideas early without the need for preliminary chapters developing sophisticated machinery. the calculus of vector fields is used as the primary tool in developing the theory. Coordinate patches are introduced only after preliminary discussions of geodesics, parallel transport, curvature, and convexity. Differential forms are introduced only as needed for use in integration. The text, which draws significantly on students' prior knowledge of linear algebra, multivariate calculus, and differential equations, is designed for a one-semester course at the junior/senior level.

There are no comments on this title.

to post a comment.
New Arrivals

Loading...

Contact Us

Library: Location maps

Phone: 00968 2323 7091 Email: Ask us a question

Library Hours

Sunday - Thursday 7:30AM - 8:00 PM

Friday - Saturday Closed